
Python  
Cheat Sheet
Mosh Hamedani

Code with Mosh (codewithmosh.com)

1st Edition

http://codewithmosh.com

About this Cheat Sheet

This cheat sheet includes the materials I’ve covered in my Python tutorial for
Beginners on YouTube. Both the YouTube tutorial and this cheat cover the core
language constructs but they are not complete by any means.

If you want to learn everything Python has to offer and become a Python expert,
check out my Complete Python Programming Course:

http://bit.ly/complete-python-course

http://bit.ly/complete-python-course

About the Author
  

 Hi! My name is Mosh Hamedani. I’m a software engineer
with two decades of experience and I’ve taught over three
million how to code or how to become a professional
software engineer. It’s my mission to make software  

 engineering simple and accessible to everyone.

https://codewithmosh.com

https://youtube.com/user/programmingwithmosh

https://twitter.com/moshhamedani

https://facebook.com/programmingwithmosh/

https://codewithmosh.com
https://www.youtube.com/user/programmingwithmosh
https://twitter.com/moshhamedani
https://www.facebook.com/programmingwithmosh/

Variables 5 ..
Comments 5 ...
Receiving Input 5 ..
Strings 6 ..
Arithmetic Operations 7 ...
If Statements 8 ..
Comparison operators 8 ..
While loops 8 ...
For loops 9 ...
Lists 9 ...
Tuples 9 ..
Dictionaries 10 ...
Functions 10 ...
Exceptions 11 ..
Classes 11 ..
Inheritance 12 ...
Modules 12 ...
Packages 13 ..
Python Standard Library 13 ..
Pypi 14 ...
Want to Become a Python Expert? 14..

Variables
We use variables to temporarily store data in computer’s memory.

price = 10

rating = 4.9

course_name = ‘Python for Beginners’

is_published = True

In the above example,

• price is an integer (a whole number without a decimal point)

• rating is a float (a number with a decimal point)

• course_name is a string (a sequence of characters)

• is_published is a boolean. Boolean values can be True or False.

Comments
We use comments to add notes to our code. Good comments explain the hows and
whys, not what the code does. That should be reflected in the code itself. Use
comments to add reminders to yourself or other developers, or also explain your
assumptions and the reasons you’ve written code in a certain way.

This is a comment and it won’t get executed.  
Our comments can be multiple lines.

Receiving Input
We can receive input from the user by calling the input() function.

birth_year = int(input(‘Birth year: ‘))

The input() function always returns data as a string. So, we’re converting the
result into an integer by calling the built-in int() function.

Strings
We can define strings using single (‘ ‘) or double (“ “) quotes.

To define a multi-line string, we surround our string with tripe quotes (“””).

We can get individual characters in a string using square brackets [].

course = ‘Python for Beginners’  
course[0] # returns the first character  
course[1] # returns the second character  
course[-1] # returns the first character from the end  
course[-2] # returns the second character from the end

We can slice a string using a similar notation:

course[1:5]

The above expression returns all the characters starting from the index position of 1
to 5 (but excluding 5). The result will be ytho

If we leave out the start index, 0 will be assumed.

If we leave out the end index, the length of the string will be assumed.

We can use formatted strings to dynamically insert values into our strings:

name = ‘Mosh’

message = f’Hi, my name is {name}’

message.upper() # to convert to uppercase

message.lower() # to convert to lowercase

message.title() # to capitalize the first letter of every word

message.find(‘p’) # returns the index of the first occurrence of p  
 (or -1 if not found)

message.replace(‘p’, ‘q’)

To check if a string contains a character (or a sequence of characters), we use the in
operator:

contains = ‘Python’ in course

Arithmetic Operations
+

-

*

/ # returns a float

// # returns an int

% # returns the remainder of division

** # exponentiation - x ** y = x to the power of y

Augmented assignment operator:

x = x + 10

x += 10

Operator precedence:

1. parenthesis

2. exponentiation

3. multiplication / division

4. addition / subtraction

If Statements
if is_hot:  
 print(“hot day”)  
elif is_cold:  
 print(“cold day”)  
else:  
 print(“beautiful day”)

Logical operators:

if has_high_income and has_good_credit:  
 ...  
if has_high_income or has_good_credit:  
 ...  
is_day = True  
is_night = not is_day

Comparison operators
a > b  
a >= b (greater than or equal to)  
a < b  
a <= b  
a == b (equals)  
a != b (not equals)

While loops
i = 1  
while i < 5:  
 print(i)  
 i += 1

For loops
for i in range(1, 5):  
 print(i)  

• range(5): generates 0, 1, 2, 3, 4

• range(1, 5): generates 1, 2, 3, 4

• range(1, 5, 2): generates 1, 3

Lists
numbers = [1, 2, 3, 4, 5]  
numbers[0] # returns the first item  
numbers[1] # returns the second item  
numbers[-1] # returns the first item from the end  
numbers[-2] # returns the second item from the end  

numbers.append(6) # adds 6 to the end  
numbers.insert(0, 6) # adds 6 at index position of 0  
numbers.remove(6) # removes 6  
numbers.pop() # removes the last item  
numbers.clear() # removes all the items  
numbers.index(8) # returns the index of first occurrence of 8 
numbers.sort() # sorts the list  
numbers.reverse() # reverses the list  
numbers.copy() # returns a copy of the list

Tuples
They are like read-only lists. We use them to store a list of items. But once we
define a tuple, we cannot add or remove items or change the existing items.

coordinates = (1, 2, 3)

We can unpack a list or a tuple into separate variables:

x, y, z = coordinates

Dictionaries
We use dictionaries to store key/value pairs.

customer = {  
 “name”: “John Smith”,  
 “age”: 30,  
 “is_verified”: True  
}

We can use strings or numbers to define keys. They should be unique. We can use
any types for the values.  

customer[“name”] # returns “John Smith”  
customer[“type”] # throws an error  
customer.get(“type”, “silver”) # returns “silver”  
customer[“name”] = “new name”  

Functions
We use functions to break up our code into small chunks. These chunks are easier
to read, understand and maintain. If there are bugs, it’s easier to find bugs in a
small chunk than the entire program. We can also re-use these chunks.

def greet_user(name):  
 print(f”Hi {name}”)  

greet_user(“John”)

Parameters are placeholders for the data we can pass to functions. Arguments
are the actual values we pass.

We have two types of arguments:

• Positional arguments: their position (order) matters

• Keyword arguments: position doesn’t matter - we prefix them with the parameter
name.

Two positional arguments  
greet_user(“John”, “Smith”)

Keyword arguments  
calculate_total(order=50, shipping=5, tax=0.1)

Our functions can return values. If we don’t use the return statement, by default
None is returned. None is an object that represents the absence of a value.

def square(number):  
 return number * number  
 
result = square(2)  
print(result) # prints 4  

Exceptions
Exceptions are errors that crash our programs. They often happen because of bad
input or programming errors. It’s our job to anticipate and handle these exceptions
to prevent our programs from cashing.

try:  
 age = int(input(‘Age: ‘))  
 income = 20000  
 risk = income / age  
 print(age)  
except ValueError:  
 print(‘Not a valid number’)  
except ZeroDivisionError:  
 print(‘Age cannot be 0’)

Classes
We use classes to define new types.

class Point:  
 def __init__(self, x, y):  
 self.x = x  
 self.y = y  
 def move(self):  
 print(“move”)  

  

When a function is part of a class, we refer to it as a method.

Classes define templates or blueprints for creating objects. An object is an instance
of a class. Every time we create a new instance, that instance follows the structure
we define using the class.

point1 = Point(10, 5)  
point2 = Point(2, 4)

__init__ is a special method called constructor. It gets called at the time of
creating new objects. We use it to initialize our objects.

Inheritance
Inheritance is a technique to remove code duplication. We can create a base class
to define the common methods and then have other classes inherit these methods.

class Mammal:  
 def walk(self):  
 print(“walk”)  
 
class Dog(Mammal):  
 def bark(self):  
 print(“bark”)  

dog = Dog()  
dog.walk() # inherited from Mammal  
dog.bark() # defined in Dog  

Modules
A module is a file with some Python code. We use modules to break up our
program into multiple files. This way, our code will be better organized. We won’t
have one gigantic file with a million lines of code in it!

There are 2 ways to import modules: we can import the entire module, or specific
objects in a module.

importing the entire converters module  
import converters  
converters.kg_to_lbs(5)

importing one function in the converters module 
from converters import kg_to_lbs  
kg_to_lbs(5)

Packages
A package is a directory with __init__.py in it. It can contain one or more
modules.

importing the entire sales module  
from ecommerce import sales  
sales.calc_shipping()

importing one function in the sales module 
from ecommerce.sales import calc_shipping  
calc_shipping()

Python Standard Library
Python comes with a huge library of modules for performing common tasks such as
sending emails, working with date/time, generating random values, etc.

Random Module
import random  
 
random.random() # returns a float between 0 to 1  
random.randint(1, 6) # returns an int between 1 to 6  
 
members = [‘John’, ‘Bob’, ‘Mary’]  
leader = random.choice(members) # randomly picks an item  

Pypi
Python Package Index (pypi.org) is a directory of Python packages published by
Python developers around the world. We use pip to install or uninstall these
packages.

pip install openpyxl

pip uninstall openpyxl  

Want to Become a Python Expert?
If you’re serious about learning Python and getting a job as a Python developer, I
highly encourage you to enroll in my Complete Python Course. Don’t waste your
time following disconnected, outdated tutorials. My Complete Python Course has
everything you need in one place:

• 12 hours of HD video

• Unlimited access - watch it as many times as you want

• Self-paced learning - take your time if you prefer

• Watch it online or download and watch offline

• Certificate of completion - add it to your resume to stand out

• 30-day money-back guarantee - no questions asked

The price for this course is $149 but the first 200 people who have downloaded this
cheat sheet can get it for $14.99 using the coupon code CHEATSHEET:

http://bit.ly/complete-python-course

http://pypi.org
http://bit.ly/complete-python-course

